Summary - What you've all been waiting for

The del/nabla operator $$ \vec{\nabla} \equiv \frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k} $$
The gradient of a scalar field \( f \) $$ \vec{\nabla}f $$ $$= \Bigg(\frac{\partial }{\partial x} \hat{i} + \frac{\partial }{\partial y} \hat{j} + \frac{\partial }{\partial z} \hat{k} \Bigg) f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k} $$
The divergence of a vector field \( \vec{E} \) $$ \vec{\nabla} \circ \vec{E} $$ $$= \Bigg(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\Bigg) \circ (E_x \hat{i} + E_y \hat{j} + E_z \hat{k}) = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} $$
The curl of a vector field \( \vec{E} \) $$ \vec{\nabla} \times \vec{E} $$ $$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix} $$ $$=\Bigg(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}\Bigg)\hat{i} + \Bigg(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\Bigg)\hat{j} + \Bigg(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\Bigg)\hat{k} $$
NOTE - We have only used the Cartesian coordinate system in this guide. The del operator \( \vec{\nabla} \) is defined differently in other coordinate systems, but the way it operates on scalar and vector fields for the gradient, divergence and curl is exactly the same. This is the beauty of vector notation.